If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-8t-13=0
a = 4.9; b = -8; c = -13;
Δ = b2-4ac
Δ = -82-4·4.9·(-13)
Δ = 318.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{318.8}}{2*4.9}=\frac{8-\sqrt{318.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{318.8}}{2*4.9}=\frac{8+\sqrt{318.8}}{9.8} $
| (3x+2)-15=15-(2x-2) | | 15x=-32 | | 5=c+-14 | | 6g-(-5+4g)=9 | | s+1=4 | | 4(2y+3)=-38 | | .60×p-32=p | | X-67=y+37 | | 2p^2=8 | | 4(y-4)=23 | | 13x+4=12x-14 | | -6x-7(-4x+2)=96 | | y=300(1+.08)5 | | -3x+3(3x+9)=-33 | | 0.2x-3.2=-3÷5=1.8 | | y=12,000(1+.06)4 | | y2=336 | | 4w-19w=90 | | 0.2x-3.2=5(1.8) | | 3x+43=7×+7x | | -3(6x+8)=-144 | | -7(-3x-3)=-42 | | (16x+4)°=110°=(3x+11)° | | 4x-12+5x=24 | | 6(7x-8)=78 | | 3x+43=7×+7 | | (8m+1)/2+m/3=m+4 | | 15x1=13 | | 4x+5+10x-40+6x+5+90=360 | | 10x=7x−3 | | -62-9x-x=58 | | 10s=7s−3 |